Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract PremisePteridophytes—vascular land plants that disperse by spores—are a powerful system for studying plant evolution, particularly with respect to the impact of abiotic factors on evolutionary trajectories through deep time. However, our ability to use pteridophytes to investigate such questions—or to capitalize on the ecological and conservation‐related applications of the group—has been impaired by the relative isolation of the neo‐ and paleobotanical research communities and by the absence of large‐scale biodiversity data sources. MethodsHere we present the Pteridophyte Collections Consortium (PCC), an interdisciplinary community uniting neo‐ and paleobotanists, and the associated PteridoPortal, a publicly accessible online portal that serves over three million pteridophyte records, including herbarium specimens, paleontological museum specimens, and iNaturalist observations. We demonstrate the utility of the PteridoPortal through discussion of three example PteridoPortal‐enabled research projects. ResultsThe data within the PteridoPortal are global in scope and are queryable in a flexible manner. The PteridoPortal contains a taxonomic thesaurus (a digital version of a Linnaean classification) that includes both extant and extinct pteridophytes in a common phylogenetic framework. The PteridoPortal allows applications such as greatly accelerated classic floristics, entirely new “next‐generation” floristic approaches, and the study of environmentally mediated evolution of functional morphology across deep time. DiscussionThe PCC and PteridoPortal provide a comprehensive resource enabling novel research into plant evolution, ecology, and conservation across deep time, facilitating rapid floristic analyses and other biodiversity‐related investigations, and providing new opportunities for education and community engagement.more » « lessFree, publicly-accessible full text available March 10, 2026
-
Lichens collected worldwide for centuries have resulted in millions of specimens deposited in herbaria that offer the potential to assess species boundaries, phenotypic diversification, ecology, and distribution. The application of molecular approaches to historical collections has been limited due to DNA fragmentation, but high-throughput sequencing offers an opportunity to overcome this barrier. Here, we combined a large dataset of ITS sequences from recently collected material and historical collections, obtained through Sanger, 454, or Illumina Sequencing, to test the performance of ITS barcoding in two genera of lichenized Basidiomycota: Cora and Corella. We attempted to generate new sequence data for 62 fresh specimens (from 2016) and 274 historical collections (collected between 1888 and 1998), for a final dataset of 1325 sequences. We compared various quantitative approaches to delimit species (GMYC, bPTP, ASAP, ABGD) and tested the resolution and accuracy of the ITS fungal barcoding marker by comparison with a six-marker dataset. Finally, we quantitatively compared phylogenetic and phenotypic species delimitation for 87 selected Cora species that have been formally described. Our HTS approach successfully generated ITS sequences for 76% of the historical collections, and our results show that an integrative approach is the gold-standard for understanding diversity in this group.more » « less
-
Summary The Cretaceous–Cenozoic expansion of tropical forests created canopy space that was subsequently occupied by diverse epiphytic communities including Eupolypod ferns. Eupolypods proliferated in this more stressful niche, where lower competition enabled the adaptive radiation of thousands of species. Here, we examine whether xylem traits helped shape the Cenozoic radiation of Eupolypod ferns.We characterized the petiole xylem anatomy of 39 species belonging to the Eupolypod I and Eupolypod II clades occupying the epiphytic, hemiepiphytic, and terrestrial niche, and we assessed vulnerability to embolism in a subset of species.The transition to the canopy was associated with reduced xylem content and smaller tracheid diameters, but no differences were found in species vulnerability to embolism and pit membrane thickness. Phylogenetic analyses support selection for traits associated with reduced water transport in Eupolypod 1 species.We posit that in Eupolypod epiphytes, selection favored water retention via thicker leaves and lower stomatal density over higher rates of water transport. Consequently, lower leaf water loss was coupled with smaller quantities of xylem and narrower tracheid diameters. Traits associated with water conservation were evident in terrestrial Eupolypod 1 ferns and may have predisposed this clade toward radiation in the canopy.more » « less
-
Abstract Recent studies have uncovered remarkable diversity inDictyonemas.lat. basidiolichens, here recognized as subtribe Dictyonemateae. This group includes five genera and 148 species, but hundreds more await description. The photobionts of these lichens belong toRhizonema, a recently resurrected cyanobacterial genus known by a single species. To further investigate photobiont diversity within Dictyonemateae, we generated 765 new cyanobacterial sequences from 635 specimens collected from 18 countries. The ITS barcoding locus supported the recognition of 200 mycobiont (fungal) species among these samples, but the photobiont diversity was comparatively low. Our analyses revealed three main divisions ofRhizonema, with two repeatedly recovered as monophyletic (proposed as new species), and the third mostly paraphyletic. The paraphyletic lineage corresponds toR. interruptumand partnered with mycobionts from all five genera in Dictyonemateae. There was no evidence of photobiont‐mycobiont co‐speciation, but one of the monophyletic lineages ofRhizonemaappears to partner predominantly with one of the two major clades ofCora(mycobiont) with samples collected largely from the northern Andes. Molecular clock estimations indicate theRhizonemaspecies are much older than the fungal species in the Dictyonemateae, suggesting that these basidiolichens obtained their photobionts from older ascolichen lineages and the photobiont variation in extant lineages of Dictyonemateae is the result of multiple photobiont switches. These results support the hypothesis of lichens representing fungal farmers, in which diverse mycobiont lineages associate with a substantially lower diversity of photobionts by sharing those photobionts best suited for the lichen symbiosis among multiple and often unrelated mycobiont lineages.more » « less
-
Abstract Opportunistic diversification has allowed ferns to radiate into epiphytic niches in angiosperm dominated landscapes. However, our understanding of how ecophysiological function allowed establishment in the canopy and the potential transitionary role of the hemi‐epiphytic life form remain unclear. Here, we surveyed 39 fern species in Costa Rican tropical forests to explore epiphytic trait divergence in a phylogenetic context. We examined leaf responses to water deficits in terrestrial, hemi‐epiphytic and epiphytic ferns and related these findings to functional traits that regulate leaf water status. Epiphytic ferns had reduced xylem area (−63%), shorter stipe lengths (−56%), thicker laminae (+41%) and reduced stomatal density (−46%) compared to terrestrial ferns. Epiphytic ferns exhibited similar turgor loss points, higher osmotic potential at saturation and lower tissue capacitance after turgor loss than terrestrial ferns. Overall, hemi‐epiphytic ferns exhibited traits that share characteristics of both terrestrial and epiphytic species. Our findings clearly demonstrate the prevalence of water conservatism in both epiphytic and hemi‐epiphytic ferns, via selection for anatomical and structural traits that avoid leaf water stress. Even with likely evolutionarily constrained physiological function, adaptations for drought avoidance have allowed epiphytic ferns to successfully endure the stresses of the canopy habitat.more » « less
An official website of the United States government
